GENERATING 3D TERRAIN MODEL FOR ROAD DESIGN USING GIS METHODS

Levente DIMEN, Prof.dr., "1 Decembrie 1918" University of Alba Iulia, Romania, ldimen@uab.ro

Alexandra DREGHICI, Lect.dr.eng., "1 Decembrie 1918" University of Alba Iulia, Romania, apopa@uab.ro

Ioan IENCIU, Prof.dr.eng., "1 Decembrie 1918" University of Alba Iulia, Politehnica Univerity of Timişoara, Romania, iienciu@uab.ro

Petronela Elena PETRUTA, Eng., Universitatea "1 Decembrie 1918", din Alba Iulia, Romania, petronela.petruta17@yahoo.com

Abstract: Digital terrain modeling is basically the creation of a digital representation of the terrain topography. Although maps that presented topographic information have been collected in a precise digital form to allow the creation of digital terrain topography models, such a model can be made using ArcMap software. In order to prepare the digital terrain model, there are used graphic and script data - a *.dwg file that includes the road section and geographical coordinates of the points of interest extracted from Google Earth. The geographical coordinates were converted into cartesian coordinates, this conversion being made using The World Coordinate Converter application. Based on the extracted data, a three-dimensional elevation model can be generated, and further used in varrious fields and applications. The generation of longitudinal and transversal profiles, with related details, is essential for better understanding the land configuration and a proper road design.

Keywords: three-dimensional model, elevation, Google Earth data extraction, ArcMap modeling

1. Introduction

The road represents the element of road infrastructure that is at the same time the technological support, vector of civilization and element of economic development. The development of transport infrastructure is a necessary condition for the successful implementation of other development priorities of rural areas, contributing to increasing the mobility of people, combating the isolation of underdeveloped areas and last but not least the development of regional and local transport infrastructure. An efficient transport infrastructure, connected to the European transport network, contributes to increasing economic competitiveness, facilitates integration into the European economy and allows the development of new activities in the internal market [11].

For the practical approach in the paperwork, a forest road from Avram Iancu commune, Alba County was chosen as a case study (Fig. 1). The existent road sector is in poor condition, degraded, and a new section should be designed and built [11], [12].

Fig. 1 The area of interest, Avram Iancu, Apuseni Mountains

2. Materials and Methods

The production of 3D models integrated in GIS systems has consistently become much higher in the space data market than traditional 2D GIS models [3], [4]. The advantages of using 3D models are plenty: they are more intuitive and richer in detail, they are considered an essential visualization method for presenting environmental data with spatial content, based on them one can better appreciate the anthropic impact on the environment, their use is not restricted [1], [2].

The capacity of a GIS is to integrate data from different sources (topographic plans, thematic maps, photogrammetry data, remote sensing data, data obtained based on GPS measurements) and to perform their analysis in order to achieve a more objective description of reality, [2], [8].

The process of creating the 3D terrain model that should represent the base for road design and rehabilitation requires several steps: importing the road section from CAD to GIS (Fig. 2), establishing the area of interest in Google Earth and extracting geographical information, converting geographical coordinates to cartesian coordinates, generating the 3D model of the terrain in ArcMap and the realization of longitudinal and transversal profiles [5], [8].

Google Earth provides geographic data that consists of latitudes and longitudes, but altitudes as well. This can be a reliable data source especially when: the GPS device does not log altitude, there is poor satellite reception when recording the track, the GPS device does log altitude, but it's not very accurate, drawing a track using the drawing tools in Google Earth or a similar application, having a file that came from Google Maps or Google Earth's "driving directions" feature, creating a route in Google Maps and have the URL of that route [9], [14].

There are programs that could instantly add elevation data — from a DEM (digital elevation model) database — to certain type of files. Therefore, it is possible to use the extracted geospatial information for 3D terrain modelling, drawing profiles, or convert a single data file to different type of files, as needed [10], [14].

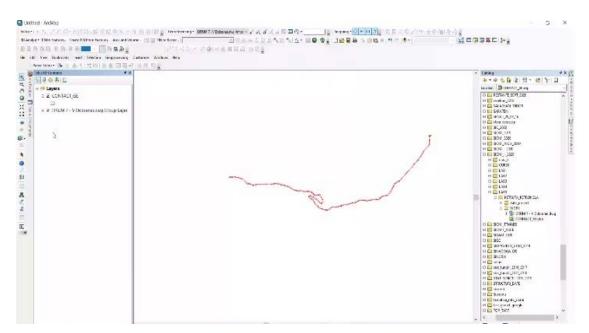


Fig. 2 The import of road section

In order to extract data from Google Earth, the first step is to mark up the interested area with lines and polygons. By simply dragging on the map, a path or a polygon can be drawn for extracting elevation data, measuring distances and areas (Fig. 3). All these information is necessary for 3D terrain modelling [6], [14].

Google Earth also offers a helpful method for extracting script data, which is the basis level for the purposed modelling [14].

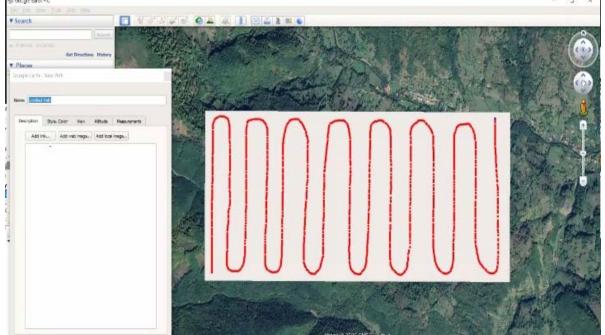


Fig. 3 Adding path to the area of interest

All the information extracted from Google Earth – the path covering the area of interest where the road should be designed and the script data necessary for the road design – are now imported in ArcMap, for 3D terrain modeling (Fig. 4) [14].

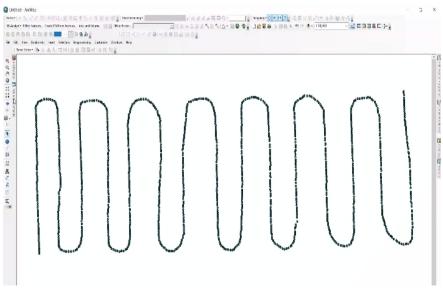


Fig. 4 Extracted data from Google Earth imported in ArcMap

A 3D terrain model is required to be as close to the reality as possible. In order to achieve such a model and furthermore to use it in different fields of applications – such as road design – it is necessary to pass all the check steps and complete an attribute worksheet (Fig. 5) [7], [14].

		R		100 W 57 15 20	2 Bist	S & H H H H K S	20 A 10 A 12 A	66. 168 	• > 10 10 A I-	The Well Linkson	· m = 4	Start Lak	
			exing Cathraine Weda		15 million i	or reaction on the							
				AN PROP									
	• (0+ ()) -	6月14月日月日	3 40 HY 10 12 12										
								a x					
· 8	- 12 6	1 R X											
208								×					
ED	Shope 1	ki Norne	Besoript Teas	DateTime's E	Bevallon	1005	LAI	<i>^</i>					
214	Part 2V	1 Unitive Path	TOPT	0000000	1050.55	2.82	45,2545						
68	Point 2V	3 Unider Fahr	TROFT		1063.825	22.7895	45,3643						
	Paint 7V	1 United Fath	TRAFT		1009-517	22 (1039	46.754			of Phys			1
	Paint 2V	3 Unities Path	TRAFT		1053.057	22.0028	45.3635	100 A 100		1 m			1
	Ford 2V	0 Unitize Path	1004		1698.35	Z130.8	46.355	7	r (1	
	Paint 2V	3 United Path	TROPT		1067,836	22 18236	45,3647		1 1				i i
	Paint 7V Paint 2V	Uniting Path Uniting Path Uniting Path	TRAFT		1005-175	22,0000	45.3033						4
	Pant 2V	1 Unidec Pain	1001		1053-115	22.782	45,2541		1 1			1	
26	Point 2V	8 United Fails	TRAFT		1064,841	22,7530	45,264			1		8	
67	Paint 7V	1 United Fath	TEKET		1064 736	22.0000	45,3051		1 1			1	<u>۱</u>
	Paint 2V	3 Unitided Path	TRAFT		1054.533	22.0528	45.3635		1 1	1	1	1	i.
22	Paril 2V	3 Unititie Path	TRUT		1054,234	Z.8072	A 45.2535		1 1		. I.		8
216	Paint 2V	0 Unitite Fails	TRAFT		1064,225	22.8428	45,3643		1 1	ŝ.		1	<u> </u>
	Paint 7V	 Unities Path 	TRAFT		1062 722	22 7891	45.3479		(i		1		
	Point 2V	 Unitied Fails 	TRAFT		1052.504	22.7591	45.3477		1 1			1	
	Ford 2V	0 Unided Path	1001		1/62/474	Z.(5)1	48.345		1 1		1	2	
	Point 2V Point 7V	3 Unided Fails	TROPT		1062,825	22.796	46.854		1 1		1		1
	Paint 2V Paint 2V	1 Unitied Path 1 Unitied Path	TRAFT		1051,748	22.7531	45.3475		1 1	8	1		8
	Pant 2V Pant 2V	2 Unit Sec Path 2 Unit Sec Path	1001		1051.176	Z2.1591 Z2.30.R	45.2675		1 1			1	
	Point 2V	3 United Pate	TRAFT		161257	22 7991	49.2034			8	1		1
	Paint 7V	1 Uniting Entry	TEXET		1049.322	22.0027	46,255					1	1
	Paint 2V	1 Unitided Path	TRAFT		1049.252	22.7591	45.3475		1			1	ē
2.6	Fant 2V	0 Unitited Path	TOPT		1045.525	21.85.28	45.9535						
	Point 2V	8 Unided Path	TROFT		1043,865	20.79美	45.3655					1	8
	Paint 7V	I United Path	TRAFT		1043-177	22 7591	45,0680		1 1			1	8
	Point 2V	3 Unitided Path	TRAFT		1043.027	22.790	45.3635					1	í.
	Paint 2V	0 Untitle Path	TUDT		1045.525	Z.307:	45.5485		1 /		\	×.	
	Point 2V Epint 2V	3 United Path 3 United Path	TRAFT		1045,394	22 (A) (F) 22 75(H)	49.3482 45.3473		N /		See. S	- Base	
	Paint 7V Paint 2V	3 United Path 3 United Path	TRAFT		1045.015	22 75 91	45,3421		Count of		- 4 in 6 -		
	Pant 20 Pant 2V	 Unidecifieds Unidecifieds 	TOUT		1045.585	22.000	45,2535						
	Flind 2V	1 Unite Fair	Taxet		1045.200	22 8071	40.0032						
	Paint 7V	1 United Fath	TRAFT		1045 272	22 (606	45,3485						
	Paint 2V	1 Unitied Path	TRAFT		1045.104	22.7591	45.3485						
					1044.788	Z/30/8	45.2554						

Fig. 5 Attribute worksheet

In the attribute worksheet, there can be added fields in order to complete the database information. In this case, there are required two more fields representing the geographic spatial location of the points defining the path drawn in Google Earth – latitude and longitude. The geographic coordinates are then converted into Cartesian coordinates in WGS 84 reference system, Stereographic 1970 projection system (Fig. 6). Now, the Cartesian

coordinates of the points defining the path are associated with their elevation, obtaining a (x, y, z) worksheet [2], [10], [14].

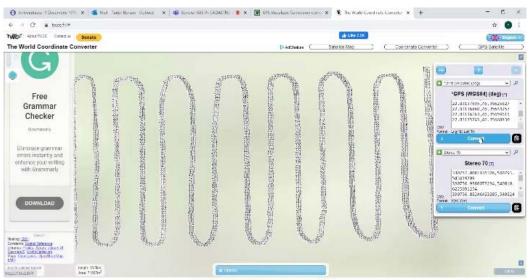


Fig. 6 Conversion to Cartesian coordinates

Based on the data obtained so far, a three-dimensional terrain model can be generated in ArcMap, which will represent the basis for the road design, considering the design area features (Fig. 7). All necessary data for the road design are stored systematically in the ArcMap database, using 3D coordinates describing the shape and all the features of the interested area, allowing the estimation of the shape and features in new points, prediction and simulation [3], [10], [14].

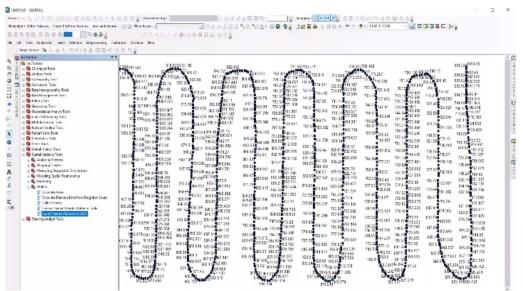


Fig. 7 Interpolation of the path elevation

ArcMap software allows the users to generate longitudinal and transversal profiles based on 3D elevation models. These profiles are used for exploring the slope, elevation, and distance along a certain path (Fig. 8) [1].

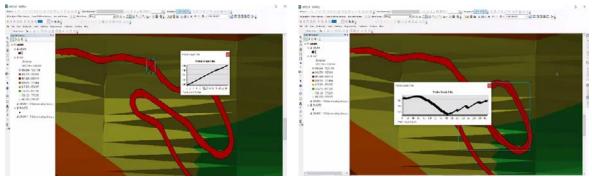


Fig. 8 Longitudinal and transversal profiles

3. Results and Discussion

The obtained 3D terrain model (Fig. 9) is in correspondence of direct resemblance to the real terrain it substitutes, described through mathematical relations, through algorithms and programs implemented on a computing system, through the technique of digital modeling. It represents a "computer tool" consisting of field information and calculation programs, including modules for processing, sorting, storing, retrieving and editing, in order to achieve the goals – the road design, construction and maintenance [9].

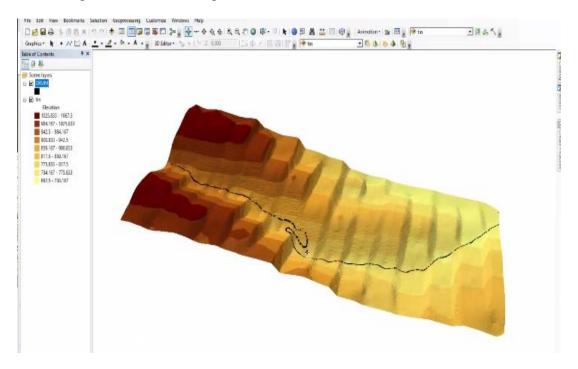


Fig. 9 3D terrain model

The main objectives in achieving a 3D terrain model is to highlight the topographic characteristics and the area relief features of the land, and by generating and using longitudinal and transversal profiles, to highlight the characteristic elements of the road.

The generated 3D terrain model was drawn up in color tones, taking into account the elevation of the area of interest. Studying it, one can draw up the conclusion that the generated 3D terrain model reflects the characteristics of a rugged terrain, given that it is located in a mountainous area (Găina Mountain) [11].

Such a 3D terrain model may have applicability in practice in order to rehabilitate the existing road and design new sections. At this moment, the existing road section needs serious repairs, restoration, consolidation, drainage, as it has potholes, landslides and crumbling [11].

Fig. 10 The actual condition of the existent road section

These degradations of the existent road section were caused by natural factors (water action, frost-thaw, rugged relief – highlighted by the modelling result), but also by anthropic factors (massive deforestation, wood transportation) [11].

The rehabilitation of the existent road section, as well as the design and execution of new sections have a major importance from the point of view of controlled forestry exploitation, forest maintenance, but also from the point of view of tourism, because it makes possible much easier access to Mountain Găina [11], [13].

4. Conclusions

The emergence of geographic information systems has generated a new stage in the processing of spatial information. The usefulness of the geographic information system is that it allows the association of spatial and non-spatial data. The geographic information system can integrate spatial and non-spatial data with other sources that it organizes and manages.

In general, a digital 3D terrain model could be used to model water flow, to run simulated avalanches or landslides, or to study land use, transportation system planning, and geological applications. Other uses include creating physical thematic maps with varied relief, flight simulator programs or other visualization and modeling applications. Digital 3D terrain models are included in geographic information systems.

The deplorable situation of the roads or their lack in the Apuseni Mountains is a first factor in terms of living standards, lack of jobs, which obviously led to the depopulation of rural areas. In this context, any interest directed towards the design, construction and rehabilitation of national, communal and exploitation roads can add to the disadvantaged areas.

In this sense, the present study could be continued by creating a geographic information system specific to the roads serving rural areas and areas with forestry and tourist potential in the Apuseni Mountains, so as to create an articulated network of infrastructure.

5. References

- 1. Badea, G.; Badea, A.C.; David, V., An approach for image processing and advantages of using in GIS, 15th International Multidisciplinary Scientific GeoConference SGEM 2015, pp. 721-728;
- 2. Badea, A. C., Badea, G., An Overview of Geoprocessing and Export Options for Creating 3D GIS Models Using Drone2Map, RevCAD 28/2020, Aeternitas Publishing House, Alba Iulia, 2020, pp. 7-14;
- 3. Borşan, T., Sisteme Informaționale Geografice, Fundamente teoretice si practice, Seria Didactica, Alba Iulia, Romania, 2013, pp 10-11;
- 4. Borşan, T., Topografie arheologica si GIS. Fundamente teoretice si aplicatii practice, Editura Risoprint, Cluj Napoca, Romania, 2015, pp 20-23;
- 5. Herban, I.S.; Vîlceanu, C.B.; Grecea, C., Road-Structure monitoring with Modern geodetic technologies, Journal of Surveying Engineering, vol. 143, no 4, 2017;
- 6. Herban, I.S.; Musat, C.C.; Grecea, C., Romanian Road Network and GIS, a Necessity to Engendering Sustainable Development, Research Journal of Agricultural Science, vol. 43, no 3, pp. 362-367, 2011;
- 7. Herban, I.S.; Grecea, C.; Dimen, L., Managing spatial data regarding the Romanian road network using GIS technology, International Multidisciplinary Scientific GeoConference: SGEM, vol. 2, p. 1095-1102, 2012;
- 8. Lai, P.C., Kwong, K-H., Mak, A. S. H., Assessing the applicability and effectiveness of 3D visualisation in environmental impact assessment, Environment and Planning B: Planning and Design 37(2), 2010, pp 221-233;
- 9. Popa, A. (2009): Fotogrammetrie. Indrumator de laborator, Seria Didactica, Universitatea "1 Decembrie 1918" din Alba Iulia;
- 10. Merciu, G.L, Modele 3D ale spațiului construit din Municipiul Reșița prin tehnici CAD și GIS, Urbanism. Arhitectura. Constructii, 2012, pp 33-36;
- 11. Proiect nr 359/2018 "Modernizarea și înființare drumuri forestiere în comuna Avram Iancu;
- 12. https://desktop.arcgis.com/en/arcmap/10.7/get-started/introduction/whats-new-inarcgis.htm;
- 13. https://ro.wikipedia.org/wiki/Comuna_Avram_Iancu,_Alba;
- 14. https://www.gpsvisualizer.com/elevation.